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Abstract
Electron spins in semiconductor quantum dots are promising candidates for the
experimental realization of solid-state qubits. We analyse the dynamics of a
system of three qubits arranged in a linear geometry and a system of four qubits
arranged in a square geometry. Calculations are performed for several quantum
dot confining potentials. In the three-qubit case, three-body effects are identified
that have an important quantitative influence upon quantum computation. In
the four-qubit case, the full Hamiltonian is found to include both three-body and
four-body interactions that significantly influence the dynamics in physically
relevant parameter regimes. We consider the implications of these results for
the encoded universality paradigm applied to the four-electron qubit code; in
particular, we consider what is required to circumvent the four-body effects in
an encoded system (four spins per encoded qubit) by the appropriate tuning of
experimental parameters.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electron spins in semiconductor quantum dots are a leading candidate for the physical
realization of qubits in a quantum computer [1]. Although any quantum algorithm may
be implemented using single-qubit and two-qubit gates [2], many such algorithms realize
substantial increases in efficiency by exploiting simultaneous interactions among three or more
qubits [3–16]. In order to employ such simultaneous interactions it is essential to understand
in detail the many-body dynamics of the system of coupled qubits. More generally, since a
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practical quantum computer may need to contain as many as 106 qubits [3] it is essential to
characterize the effect of many-body interactions on the system’s overall energy landscape.

In past work [17, 18], we used a model confining potential of superposed parabolic minima
to demonstrate that three-body effects significantly influence the Hamiltonian of three electrons
confined to three quantum dots at the vertices of an equilateral triangle and that four-body
effects are significant for four electrons confined to a tetrahedral arrangement of four dots.
(The introduction of a third spin adds no new terms to the Hamiltonian, but the coupling
strength for each pair of spins is changed nontrivially by the presence of the third.) Here we
extend these results in two ways. First, we analyse three quantum dots in a linear geometry [19]
and four dots in a square geometry [20] since these geometries are more likely to occur in a
real quantum computer apparatus. Second, by employing a Gaussian shape for the confining
potential of each well [21] we explore the sensitivity of the many-body effects to the form
of the confining potential. In both cases a non-perturbative calculation finds that many-body
effects contribute appreciably to the Hamiltonian. We note that Scarola et al [22, 23] have
demonstrated that the application of a magnetic field allows chiral terms to arise in the spin
Hamiltonian, which modifies this Hamiltonian in another important manner as compared to
the naı̈ve Heisenberg form.

Hitherto, discussions of quantum dot quantum computation have nearly always assumed
pairwise Heisenberg interactions. In view of the above result, this implies that computational
errors may occur in the context of quantum computers using electron spin qubits in quantum
dots, unless one always simultaneously couples only disjoint pairs of dots. There are at least
four circumstances where this may be undesirable or even infeasible. One is fault tolerant
quantum error correction, where simultaneous operations on several coupled dots have been
associated with better error thresholds. A second is adiabatic quantum computation [11], in
which the final Hamiltonian may include the simultaneous interactions that we discuss here.
We will not analyse these possibilities here, although we believe that the methods we discuss
below are relevant to them.

We will focus on two other contexts, that of ‘encoded universality’ (EU) [5–9] and that of
computation on decoherence-free subspaces (DFSs) [5, 6, 24] and supercoherent qubits [10].
In these cases, the goal is to perform universal quantum computation using (in the case of EU)
only the most easily controllable interaction or (in the case of DFS and supercoherence) using
only interactions that preserve the code subspace, since that subspace offers protection against
certain types of decoherence. (Strong and fast exchange interaction pulses can further be used
to suppress decoherence [25] and to eliminate decoherence-induced leakage [26].)

We will refer to these cases collectively as ‘encoded quantum computation’. It turns
out that universal quantum computation using only the Heisenberg exchange interaction
is an extremely attractive possibility in encoded models, and we will consider it in detail
below. After establishing that four-body interaction terms can arise in a Heisenberg exchange
Hamiltonian, we investigate the question of neutralizing their effect by using encoded
qubits [5, 6, 8–10, 24–29]. By generalizing the work of Bacon [30], who showed that universal
quantum computation was possible using encoded gates with two-body coupling Hamiltonians
(i.e. assuming that the Heisenberg Hamiltonian was applicable even when coupling three or
more dots at a time), we enumerate tuning conditions on experimental parameters that are
needed for the four-body effects to cancel out. An alternative is to design these encoded gates
while allowing only pairs of electrons to couple at any given time. This is indeed possible,
as shown in [31] for the price of significantly longer pulse sequences per given encoded
gate. Nevertheless, in view of the findings reported here and in [22, 23], this price may be
worth paying.
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2. Three-electron case

A system of three electrons within a confining scalar potential V (r) obeys the Hamiltonian

H =
3∑

i=1

[
p2

i

2m
+ V (ri )

]
+
∑

i< j

e2

κ |ri − r j | (1)

≡
3∑

i=1

h(ri) +
∑

i< j

w(ri , r j ) (2)

in the absence of spin–orbit coupling and external magnetic fields. Although [17] succeeded
in demonstrating significant three-body and four-body effects in systems containing three or
more electrons, a confining potential with quadratic minima has certain other characteristics
which are unlikely to describe an experimental arrangement; for example, it diverges at large
distances from the origin, and the single adjustable parameter ω0 forces us to specify very
narrow minima whenever we want a high barrier between them. We therefore begin with the
Gaussian form

V (r) = −V0[e−α|r−A|2 + e−α|r−B|2 + e−α|r−C|2 ] (3)

which has two tunable parameters. The three fixed points are collinear and separated by a
distance 2l: A = (−2l, 0, 0), B = (0, 0, 0) and C = (2l, 0, 0).

We assume a Heitler–London approximation [32], wherein excited orbital states and states
with double occupation of any single dot are neglected (see [23] for a recent discussion of
the validity of this approximation in the context of electron spin qubits). The system’s only
degrees of freedom are therefore the spins of the confined electrons, leading to a total of 23 = 8
‘computational’ basis states

|�(sA, sB , sC)〉 =
∑

P

δP P[|A〉 |B〉 |C〉 |sA〉 |sB〉 |sC 〉]. (4)

In the above, |{A}〉 are the three localized orbital ground states; |s{A}〉 denote the corresponding
spin states; P is the set of all permutations of {A, B,C}; δP is 1 (−1) for even (odd)
permutations. For instance, one of the eight (unnormalized) basis states is

|�(↑↑↓)〉 = |ABC〉|↑↑↓〉 − |AC B〉|↑↓↑〉 + |C AB〉|↓↑↑〉 − |C B A〉|↓↑↑〉
+ |BC A〉|↑↓↑〉 − |B AC〉|↑↑↓〉.

To characterize the localized orbital state |{A}〉 for each dot, we expand (3) to quadratic order
and solve the Schrödinger equation as though the other potential wells were absent:

φA(r) ≡ 〈r|A〉 ≡
(mωo

π h̄

)3/4
exp

(
−mωo

2h̄
|r − A|2

)
. (5)

Unless α is small compared to l−2, this is of course a much coarser approximation than it would
be for purely quadratic minima, so we refine it by centringφA(r) and φC(r) at the points which
minimize 〈A|h|A〉 and 〈C|h|C〉. Because these orbitals overlap at least slightly for any finite
ωo, the states (4) are not orthogonal.

We now define Hspin to be the matrix representation of H in the basis (4), and expand it
in terms of tensor products of Pauli matrices:

Hspin =
∑

i, j,k

ci jkσi ⊗ σ j ⊗ σk .

This expansion is always possible, since the set of n-fold tensor products of Pauli matrices
constitutes a complete orthonormal basis for the linear vector space of all 2n × 2n matrices.
Because we have written the basis (4) in the form |sA〉|sB〉|sC 〉 these Pauli matrices can be
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associated with spin operators on each of the three quantum dots. For example, we can write
σ1⊗σ3⊗σ0 = 2SA,x ⊗2SB,z ⊗ I ≡ 4SA,x SB,z , where the notation SW,i means the Pauli operator
σi applied to the electron in the quantum dot at W and where I is the 2 × 2 identity matrix.
(We exclude h̄ from the definition of the matrices σi ; thus, ci jk have the dimensions of energy.)
In the case of an arbitrary 8 × 8 matrix, 64 complex numbers would be required to specify
ci jk fully, but the operator (1) clearly has certain properties which constrain the values of the
coefficients, such as hermiticity, reflection symmetry, rotation symmetry, inversion symmetry
and invariance under permutation of the electrons’ labels. Once these symmetries have been
accounted for, the ci jk may be characterized by just three real quantities:

Hspin = K0 + K2[AB](SA · SB + SB · SC) + K2[AC]SA · SC , (6)

where SW ·SV = SW,x SV,x +SW,y SV,y +SW,z SV,z and K2[i j ] is the pairwise coupling coefficient
between the spins of the electrons in dots i and j . Here and elsewhere, we use symmetry
considerations to reduce the number of coupling coefficients in our equations; in this case, the
reflection symmetry of (3) through the x–z plane implies that K2[AB] = K2[BC]. Physically,
the constant K2[AB] quantifies the coupling between adjacent spins while K2[AC] describes
the coupling between the spins at opposite ends of the row.

Defining ST = SA + SB + SC , one finds that

Hspin = L0 + L1S2
T + L ′

1(SA + SC)
2 (7)

where

K0 = L0 + 9
4 L1 + 3

2 L ′
1

K2[AB] = 2L1

K2[AC] = 2L1 + 2L ′
1.

(8)

The expansion (7) reveals that any simultaneous eigenstate of (SA + SC)
2 and S2

T is also
an eigenstate of Hspin. We can construct such simultaneous eigenstates by using the Clebsch–
Gordan table twice, first to combine the spin of the electron in dot A with the spin of the
electron in dot C , and then to combine that spin-1 (or spin-0) system with the spin of the
electron in dot B:∣∣ 3

2
3
2 ; 1

〉 = |�(↑↑↑)〉
∣∣ 3

2
1
2 ; 1

〉 = |�(↑↑↓)〉 + |�(↑↓↑)〉 + |�(↓↑↑)〉
∣∣ 3

2 − 1
2 ; 1

〉 = |�(↓↓↑)〉 + |�(↓↑↓)〉 + |�(↑↓↓)〉
∣∣ 3

2 − 3
2 ; 1

〉 = |�(↓↓↓)〉
∣∣ 1

2
1
2 ; 1

〉 = 2|�(↑↓↑)〉 − |�(↑↑↓)〉 − |�(↓↑↑)〉
∣∣ 1

2 − 1
2 ; 1

〉 = 2|�(↓↑↓)〉 − |�(↓↓↑)〉 − |�(↑↓↓)〉
∣∣ 1

2
1
2 ; 0

〉 = |�(↑↑↓)〉 − |�(↓↑↑)〉
∣∣ 1

2 − 1
2 ; 0

〉 = |�(↓↓↑)〉 − |�(↑↓↓)〉,

(9)

where the indices on the left-hand side denote the values of ST, ST,z and |SA + SC | respectively.
Although the states |�(sA, sB , sC)〉 are not orthonormal, the eight states (9) are orthogonal,
and they are also eigenvectors of the 8 × 8 matrix (7), which means that Hspin has been
diagonalized. To obtain the parameters {L0, L1, L ′

1} we will choose three eigenstates with
different good quantum numbers, and observe that their energies can be evaluated either by
matrix algebra or by integrating microscopically over the axes ri and the spins to compute the
expectation value of (1):

〈�|Hspin|�〉 = 〈�|H |�〉. (10)
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Inserting (7) into the left-hand side, for three distinct combinations of the good quantum
numbers {(SA + SC)

2, S2
T}, yields

〈
3
2

3
2 ; 1|Hspin| 3

2
3
2 ; 1

〉
〈

3
2

3
2 ; 1| 3

2
3
2 ; 1

〉 = L0 +
15

4
L1 + 2L ′

1

〈
1
2

1
2 ; 1|Hspin| 1

2
1
2 ; 1

〉
〈

1
2

1
2 ; 1| 1

2
1
2 ; 1

〉 = L0 +
3

4
L1 + 2L ′

1

〈
1
2

1
2 ; 0|Hspin| 1

2
1
2 ; 0

〉
〈

1
2

1
2 ; 0| 1

2
1
2 ; 0

〉 = L0 +
3

4
L1

(11)

while the corresponding wavefunctions (9) turn the right-hand side into

E 3
2 ,

3
2 ;1 = 〈�(↑↑↑)|H |�(↑↑↑)〉

〈�(↑↑↑)|�(↑↑↑)〉
E 1

2 ,
1
2 ;1 = 〈�(↑↑↓)|H |�(↑↑↓)〉 + 2〈�(↑↓↑)|H |�(↑↓↑)〉 − 4〈�(↑↑↓)|H |�(↑↓↑)〉 + 〈�(↑↑↓)|H |�(↓↑↑)〉

〈�(↑↑↓)|�(↑↑↓)〉 + 2〈�(↑↓↑)|�(↑↓↑)〉 − 4〈�(↑↑↓)|�(↑↓↑)〉 + 〈�(↑↑↓)|�(↓↑↑)〉
E 1

2 ,
1
2 ;0 = 〈�(↑↑↓)|H |�(↑↑↓)〉 − 〈�(↑↑↓)|H |�(↓↑↑)〉

〈�(↑↑↓)|�(↑↑↓)〉 − 〈�(↑↑↓)|�(↓↑↑)〉 .

(12)

The evaluation of these matrix elements and overlap integrals is a tedious, but straightforward
procedure given the microscopic forms of H and ψ(r) in (1), (3) and (5). Combining
equations (8), (11) and (12), we thus compute K0, K2[AB] and K2[AC] in terms of ω0 and
the dimensionless system parameters

xb ≡
1
2 mω2

0l2

1
2 h̄ω0

= mω0l2

h̄
(13)

xc ≡ e2

κlh̄ω0
(14)

xv ≡ 2V0

h̄ω0
. (15)

Physically, the quantity xb is the ratio of the height of the potential barrier between wells to
the energy of the orbital ground state (5), while xc is the ratio of the equilibrium Coulomb
repulsion potential to the energy of the orbital ground state and xv is the ratio of the individual
well depth V0 to the ground state energy.

Here and in the following section, we have estimated experimentally relevant values of
xb and xc as is done in [1]. We assume that the width of the function (5), which is 2

√
h̄/mωo,

must be roughly equal to the separation between adjacent dots 2l; using (13) we conclude that
xb ≈ 1. For GaAs heterostructure single dots, κ ≈ 13, m∗ ≈ 0.067 me and h̄ωo ≈ 3 meV,
which according to (14) means that xc ≈ 1.5.

A potential of the form (3) is most suitable for quantum computation when αl2 is close
to 1; if the inverted Gaussian decays too quickly in space, the spin coupling in the system
becomes negligible, and if it decays too slowly, the local minima in V tend to coalesce at the
centre. Using 1

2 h̄ωo ∼ 1 meV, V0 ≈ 3 meV [1] and our prior estimate of xc ≈ 1.5, we obtain
the relation xb ≈ xv ∼ 3 by applying (13), (14) and (15). Noting that the parameter xc has very
little influence on any of the coupling constants over physically realistic ranges of xb and xv

(and in any event depends on quantities, such as κ , which are difficult to tune experimentally)
we henceforth set xc = 1.5.
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Figure 1. Plot of K0, the overall energy shift, as a function of dimensionless barrier height xb and
overall well depth xv in the case of three mutually interacting electrons in a linear geometry. In
this and subsequent figures the Coulomb repulsion parameter xc is set to 1.5 as in [17].
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Figure 2. Plot of K2[AB], the two-body coupling coefficient for adjacent dots, as a function of
dimensionless barrier height xb and overall well depth xv in the case of three mutually interacting
electrons in a linear geometry.

Figure 1 shows the energy shift K0 as a function of the system parameters {xb, xv}. As
one might expect, this spin-independent quantity increases with increasing xv and decreasing
xb (whenever ωo decreases, there is greater orbital overlap and thus more Coulomb repulsion,
irrespective of spin state). The coupling constants K2[AB] and K2[AC] are plotted in figures 2
and 3 respectively. We notice that they differ (which rules out the simple Heisenberg form
Hspin = J

∑
i< j (Si · S j )), and that K2[AC] is only about an order of magnitude smaller

than K2[AB] as we have confirmed by studying K2[AB](xb, xv) and K2[AC](xb, xv) on a
logarithmic scale. In the context of quantum computation, this demonstrates that a nearest-
neighbour approximation for the coupling between dots is insufficient (see also [23], where
a similar conclusion was reported using a low-energy Hubbard model with one electron per
site).
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Figure 3. Plot of K2[AC], the two-body coupling coefficient for non-adjacent dots, as a function
of dimensionless barrier height xb and overall well depth xv in the case of three mutually interacting
electrons in a linear geometry.

3. Four-electron case

For the case of four quantum dots arranged in a square of side 2l our formalism is more complex
in detail but identical in structure. We therefore describe the computation only in outline.

The confining potential in the coordinate Hamiltonian

H =
4∑

i=1

[
p2

i

2m
+ V (ri )

]
+
∑

i< j

e2

κ |ri − r j | (16)

now becomes

V (r) = −V0[e−α|r−A|2 + e−α|r−B|2 + e−α|r−C|2 + e−α|r−D|2 ],

where A = (0, 2l, 0), B = (2l, 2l, 0), C = (2l, 0, 0) and D = (0, 0, 0). Our computational
basis consists of 16 fully antisymmetrized vectors of the form

|�(sA, sB , sC , sD)〉 =
∑

P

δP P[|A〉 |B〉 |C〉 |D〉 ⊗ |sA〉 |sB〉 |sC 〉 |sD〉]. (17)

The form of φ(r) remains the same; to maintain the required geometrical symmetries, we now
shift all four localized orbital wavefunctions an equal distance towards the point (l, l, 0).

Expanding H in terms of products of Pauli matrices, as in

Hspin =
∑

i, j,k,


ci jk
σi ⊗ σ j ⊗ σk ⊗ σl ,

we discover by applying the symmetries of (16) that four-body terms now appear with nonzero
coupling coefficients:

Hspin = K0 + K2[AB](SA · SB + SB · SC + SC · SD + SD · SA) + K2[AC](SA · SC + SB · SD)

+ K4[ABC D][(SA · SB)(SC · SD) + (SB · SC)(SD · SA)]

+ K4[AC B D](SA · SC)(SB · SD), (18)

where K4[i jk
] is the four-body coupling coefficient among the spins of the electrons in
dots i , j , k and 
. Physically, the constant K2[AB] describes the pairwise coupling between
adjacent spins, while K2[AC] describes the pairwise coupling between non-adjacent spins,
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Figure 4. Plot of K0, the overall energy shift, as a function of dimensionless barrier height xb and
overall well depth xv in the case of four mutually interacting electrons in a square geometry.

K4[ABC D] describes four-body interactions concentrating on pairs of adjacent spins and
K4[AC B D] describes four-body interactions concentrating on pairs of non-adjacent spins.
We define ST = SA + SB + SC + SD , which leads us to

Hspin = L0 + L1S2
T + L ′

1[(SA + SC)
2 + (SB + SD)

2] + L2(S2
T)

2 + L ′
2(SA + SC)

2(SB + SD)
2

(19)

where
K0 = L0 + 3L1 + 3L ′

1 + 45
2 L2 + 9

4 L ′
2

K2[AB] = 2L1 + 24L2

K2[AC] = 2L1 + 2L ′
1 + 24L2 + 3L ′

2

K4[ABC D] = 8L2

K4[AC B D] = 8L2 + 4L ′
2.

(20)

Applying the Clebsch–Gordan table three times creates 16 simultaneous eigenstates of
(SA + SC)

2, (SB + SD)
2 and S2

T. Inserting five of these states with different quantum numbers
into (10) yields five equations for the five unknowns {L0, L1, L ′

1, L2, L ′
2} in terms of the

eigenstate energies. As before, these energies may be expressed in closed form as functions
of xb, xc and xv by integrating the right-hand side of (10) explicitly.

The energy shift K0 for the square case is plotted in figure 4; as before, this constant is
largest for strongly Coulomb-coupled dots separated by low potential barriers. Figures 5–8
depict the coupling coefficients K2[AB], K2[AC], K4[ABC D] and K4[AC B D] respectively.
The departure from the pairwise Heisenberg picture is even more pronounced here: we
see that for physically relevant values of the parameters {xb, xv} the four-body coefficient
K4[AC B D] is of the same order of magnitude as the two-body coefficient K2[AC], while
K4[ABC D]/K2[AB] ∼ 0.1 as is confirmed by plotting K2[AB](xb, xv), K2[AC](xb, xv),
K4[ABC D](xb, xv) and K4[AC B D](xb, xv) on a logarithmic scale. Typically K4[AC B D]
is opposite in sign to K2[AC], leading to a particularly important competition between the
two-body and four-body interactions.

In order to confirm that the qualitative similarities between our final results and those
of [17] were not artefacts of having made two broad changes to V (r) rather than one, we
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Figure 5. Plot of K2[AB], the two-body coupling coefficient for adjacent dots, as a function of
dimensionless barrier height xb and overall well depth xv in the case of four mutually interacting
electrons in a square geometry.
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Figure 6. Plot of K2[AC], the two-body coupling coefficient for non-adjacent dots, as a function
of dimensionless barrier height xb and overall well depth xv in the case of four mutually interacting
electrons in a square geometry.

also analysed both the N = 3 and 4 dot geometries using a confining potential of superposed
quadratic minima. The variation of the coupling coefficients, within experimentally relevant
ranges of xb and xc (analogous to figures 1 through 8), strongly resembled that for the Gaussian
potential in all cases.

4. Computing in the presence of four-body interactions using encoded qubits

We have shown that coupling three dots simultaneously quantitatively modifies the value
of the exchange constant, and that coupling four dots simultaneously switches on a four-
body interaction term of the form K4[ABC D](SA · SB)(SC · SD) and its permutations. This
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Figure 7. Plot of K4[ABC D], the four-body coupling coefficient for pairs of adjacent dots, as a
function of dimensionless barrier height xb and overall well depth xv in the case of four mutually
interacting electrons in a square geometry.
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Figure 8. Plot of K4[AC B D], the four-body coupling coefficient for pairs of non-adjacent dots, as
a function of dimensionless barrier height xb and overall well depth xv in the case of four mutually
interacting electrons in a square geometry. Note that two of the axis directions are reversed from
the preceding figures.

conclusion appears to be robust under changes in dot geometry and in the confining potential.
A natural question is whether there exist methods to cancel the four-body correction. The
issue is particularly urgent when one considers encoded quantum computation (EQC). In
many known constructions of universal gates for EQC [5–10, 24–29, 31] there arises the need
to simultaneously couple several spins. One of the most popular codes, described in detail
below, uses four spins per encoded or logical qubit [5, 6, 8–10, 24–29]. For this code, universal
computation requires that four spins be coupled at the same time using pairwise Heisenberg
interactions. Hence a priori it appears that EQC using the four-qubit code suffers from a
fundamental flaw. We now explore whether the four-qubit code may be implemented in such
a way that each four-body coupling is either cancelled or reduced to an overall phase. Our
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findings highlight problems that the four-body terms present in the context of EQC and also
provide an interesting perspective on how the four-body terms may need to be dealt with in
general.

4.1. The code

Let us describe the four-spin DFS code, first proposed in [27] in the context of providing
immunity against collective decoherence processes (see [29] for a review). Let the singlet and
triplet states of two electrons i, j be denoted as

|s〉i j ≡ |S = 0,mS = 0〉 = 1√
2
(|�(↑↓)〉 − |�(↓↑)〉)

|t−〉i j ≡ |S = 1,mS = −1〉 = |�(↓↓)〉
|t0〉i j ≡ |S = 1,mS = 0〉 = 1√

2
(|�(↑↓)〉 + |�(↓↑)〉)

|t+〉i j ≡ |S = 1,mS = 1〉 = |�(↑↑)〉.
Then a single encoded DFS qubit is formed by the two singlets of four spins, i.e. the two states
with zero total spin ST = |SA + SB + SC + SD|. These states are formed by combining two
singlets of two pairs of spins (|0L〉), or triplets of two pairs of spins (|1L〉), with appropriate
Clebsch–Gordan coefficients:

|0L〉 = |s〉AB ⊗ |s〉CD = 1
2 (|�(↑↓↑↓)〉 + |�(↓↑↓↑)〉

− |�(↑↓↓↑)〉 − |�(↓↑↑↓)〉) (21)

|1L〉 = 1√
3
(|t−〉AB ⊗ |t+〉CD − |t0〉AB ⊗ |t0〉CD + |t+〉AB ⊗ |t−〉CD)

= 1√
3
(2|�(↑↑↓↓)〉 + 2|�(↓↓↑↑)〉 − |�(↑↓↓↑)〉

− |�(↓↑↑↓)〉 − |�(↑↓↑↓)〉 − |�(↓↑↓↑)〉). (22)

As shown in [5, 6], the Heisenberg interaction Si · S j can be used all by itself to implement
universal quantum computation on this type of system. The Heisenberg interaction is closely
related to the exchange operator Ei j , defined as

Ei j =




1
0 1
1 0

1



 (23)

via Ei j = 1
2 (4Si · S j + I ). The difference in their action as gates is only a phase; hence we will

use Ei j and Si ·S j interchangeably from now on and write Ei j � Si ·S j . The Ei j have a simple
action on the electronic spin up/down states, as seen from the matrix representation (23): the
states |00〉 and |11〉 are invariant whereas |01〉 and |10〉 are exchanged. Using this, it is simple
to show that in the {|0L〉, |1L〉} basis the exchange operators can be written as [6, 28]

E AB = ECD =
(−1 0

0 1

)
= −Z̄

E AC = EB D =
√

3

2
X̄ +

1

2
Z̄

E AD = EBC = −
√

3

2
X̄ +

1

2
Z̄ ,

(24)
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where X̄, Z̄ are the encoded Pauli matrices σx, σz , i.e. the Pauli matrices acting on the |0L〉, |1L〉
states. It follows from the Euler angle formula e−iωn·σ = e−iβσz e−iθσx e−iασz (a rotation by angle
ω about the axis n, given in terms of three successive rotations about the z and x axes) that
one can perform all single encoded-qubit operations on the DFS states simply by switching
the exchange interaction on and off. Note that the Euler angle formula is satisfied by any pair
of non-parallel axes, although orthogonal axes may be more convenient. One can obtain an
encoded σx operation by switching on two interactions simultaneously for the appropriate time
intervals:

X̄ = −2(E AC + 1
2 E AB)/

√
3 = (E AC − E AD)/

√
3.

Use of the Euler angle formula requires a Hamiltonian which is a sum of exchange terms with
controllable coefficients Ji j(t):

HS =
∑

i< j

Ji j(t)Ei j .

This is achievable, for example, by using local magnetic fields [1, 20, 21, 33, 34], by
ferroelectric gates [35] or by optical rectification [36]. It is important to emphasize that the last
two methods [35, 36] do not require magnetic field control, hence overcoming at least in part
the problems with EQC raised in [22, 23]. This is an important advantage with regard to EQC,
which renders these exclusively electrical control methods distinctly preferable to those using
magnetic fields. However, residual magnetic fields, for example due to nuclear spin impurities,
do remain a problem, especially in the group III–V semiconductors such as GaAs [37]. In
silicon-based architectures this problem can be minimized by isotopic purification [38].

4.2. Effect of the four-body terms on a single encoded qubit

Let us now consider how the four-body terms act on the DFS code. Using the results above,
we find that

(SA · SB)(SC · SD) � E AB ECD = (−Z̄)2 = I

where I is the identity operator. Also,

E AC EB D =
(√

3

2
X̄ +

1

2
Z̄

)2

= 1
4

[
3I + I +

√
3(X̄ Z̄ + Z̄ X̄)

]
= I

and similarly E AD EBC = I . Thus all fourth-order terms (Si · S j )(Sk · Sl) ∝ I as long we
restrict their action to the subspace encoding one qubit. This implies that the encoding into
the four-qubit DFS is immune to the fourth-order terms. In other words, when this encoding
is used the problem of the computational errors induced by the undesired fourth-order terms
simply disappears, as long as we restrict our attention to a single encoded qubit.

4.3. Two encoded qubits

We must also be able to couple encoded qubits via a non-trivial gate such as controlled-
phase: C P = diag(−1, 1, 1, 1). This is one way to satisfy the requirements for universal
quantum computation [39], though it is also possible to complete the set of single-qubit gates
by measurements [40]. Two encoded qubits of the form (21), (22) occupy a four-dimensional
subspace of the zero total spin subspace of eight spins. The zero total spin subspace is 14-
dimensional. A very useful graphical way of seeing this, introduced in [6] but also known as
a Bratteli diagram, is depicted in figure 9.
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Figure 9. Partitioning of the Hilbert space of N spin-1/2 particles into DF subspaces (nodes of
the graph). The integer above each node represents the number of paths leading from the origin to
that node.

As more spins are added (horizontal axis) there are more possibilities for constructing a
state with given total spin (vertical axis). In the case of four spins there are two paths leading
from the origin to ST = 0; these correspond exactly to the |0L〉 and |1L〉 code states. For
eight spins there are 14 such paths. Only four of these correspond to the four basis states
{|0L0L〉, |0L 1L〉, |1L 0L〉, |1L 1L〉}. It is convenient to label paths according to the intermediate
total spin: the state |S1, S2, S3, S4, S5, S6, S7, S8〉, where Sk is the total spin of k spin-1/2
particles, uniquely corresponds to a path in figure 9 (we omit the origin in this notation) and
the Sk form a complete set of commuting observables [6]. For example,

|0L0L〉 = |1/2, 0, 1/2, 0, 1/2, 0, 1/2, 0〉 = ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

|0L1L〉 = |1/2, 0, 1/2, 0, 1/2, 1, 1/2, 0〉 = ↗ ↘
↗ ↘ ↗ ↘ ↗ ↘

|1L0L〉 = |1/2, 1, 1/2, 0, 1/2, 0, 1/2, 0〉 = ↗ ↘
↗ ↘ ↗ ↘ ↗ ↘

|1L1L〉 = |1/2, 1, 1/2, 0, 1/2, 1, 1/2, 0〉 = ↗ ↘ ↗ ↘
↗ ↘ ↗ ↘ .

On the right we have indicated the path in figure 9 corresponding to each state. The
other 10 states with zero total spin can be similarly described. Thus the set of 14 states
{|S1, S2, S3, S4, S5, S6, S7, 0〉} forms a basis for the subspace of zero total spin of eight
spin-1/2 particles. Henceforth we will find it convenient to represent exchange operators
in this basis. We will order the 14 basis states as follows: first the four code states
|0L0L〉, |0L1L〉, |1L0L〉, |1L1L〉 as above, then

|1/2, 0, 1/2, 1, 1/2, 0, 1/2, 0〉, |1/2, 1, 1/2, 1, 1/2, 0, 1/2, 0〉,
|1/2, 0, 1/2, 1, 1/2, 1, 1/2, 0〉, |1/2, 1, 1/2, 1, 1/2, 1, 1/2, 0〉,
|1/2, 0, 1/2, 1, 3/2, 1, 1/2, 0〉, |1/2, 1, 3/2, 1, 1/2, 0, 1/2, 0〉,
|1/2, 1, 3/2, 1, 3/2, 1, 1/2, 0〉, |1/2, 1, 3/2, 2, 3/2, 1, 1/2, 0〉,
|1/2, 1, 1/2, 1, 3/2, 1, 1/2, 0〉, |1/2, 1, 3/2, 1, 1/2, 1, 1/2, 0〉.
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For example in this basis the operator EDE has the representation4

EDE =





1
2

√
3

2
1
2

√
3

2
1
2

√
3

2
1
2

√
3

2√
3

2 − 1
2√

3
2 − 1

2√
3

2 − 1
2√

3
2 − 1

2
1

1
1
4

√
15
4√

15
4 − 1

4
1

1





.

Recall that the first four rows refer to the code space. It is then clear that EDE mixes the
code space with four of the remaining ten states that have zero total spin. This is a general
feature of all exchange operators acting on two code blocks simultaneously. For this reason it
is impossible to couple two code blocks in one step while preserving the code space.

4.4. Enacting an encoded controlled-phase gate

For the four-qubit code above, procedures implementing a C P gate were first given in [5, 6].
Recently, Bacon [30 appendix E] has found a simplified scheme which is a useful starting
point for our purposes. Bacon’s implementation of a C P gate between two pairs of four-qubit
blocks (qubits A–D and qubits E–H ) involves a sequence of 14 elementary gates, each of
which requires that several simultaneous exchange interactions be switched on and off. We
will here take the approach of utilizing Bacon’s construction, while making some modifications
due to the appearance of three- and four-body corrections. For ease of visualization we will
assume that the two blocks are squares of side 2l and that dots D and E are separated by
a distance 2l, although nearly all of the following calculations are independent of the exact
spatial relationship between the blocks.

The gates are (adapting the notation of [30 appendix E])

U1 = exp

{
iπ√

3

[
EDE +

1

2

D∑

A=i< j

Ei j

]}

U2 = exp

{
iπ

4
√

2

[
−3EE F − 2

3
(EFG + EF H + EG H )

]}

U3 = exp

{
iπ

4
√

2

[
−3ECD − 2

3
(E AB + E AC + EBC)

]}

U5 = exp

{
iπ√

3

[
EFG +

1

2
EG H

]}

U6 =
(

UAUBU †
AU †

B

)2

4 All matrix calculations reported here were performed with Mathematica.
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where

UA = exp

[
− i

2
cos−1(−1/3)EDE

]

UB = exp

[
− iπ

2

D∑

A=i< j

Ei j

]
.

In terms of these gates the controlled-phase gate can be written as

C P = U †
1 (U

†
2 U †

3 )U
†
5 U6U5(U3U2)U1, (25)

where U3U2 can be executed in one step since by inspection the two gates operate on the two
blocks separately (and identically). This gate sequence operates in the entire 14-dimensional
subspace of ST = 0 states of eight spins: the code space is left after application of U1, but is
returned to at the end of the sequence whenU †

1 is applied. Hence our single-qubit considerations
above do not apply: even if a four-body interaction acts as the identity operator on a single
encoded qubit, it may act non-trivially in the larger ST = 0 space. We must therefore carefully
analyse the action of this gate sequence in light of the three- and four-body corrections.

The key point in Bacon’s construction of the gate sequence is to ensure that each gate
acts ‘classically’, i.e. it only couples a given ST = 0 basis state to another without creating
superpositions of such basis states (that the gates above act in this manner is not at all simple to
see directly, but is the reason for the particular choice of angles in the gates). We find that, in
order to still satisfy this key criterion, it is necessary to tune the four-body exchange coupling
constants. Thus to enact a C P gate in the presence of four-body interactions, there needs to
be sufficient flexibility in tuning the four-body coupling. We note that there are other ways to
obtain a C P gate [31]; our present goal is mainly to explore the implications of the four-body
terms in a context of some general interest.

A detailed matrix calculation (see the appendix) shows us that the effect of nearly every
gate in (25) depends upon the relative strengths of the exchange coefficients between the various
pairs or quartets of dots it couples, as in

C P ′ = U ′†
1 (J

′
a, J ′

b, J ′
c, J ′

d)
[
U ′†

2 (J
′
2, J ′′

2 )U
′†
3 (J

′
3, J ′′

3 )
]

U ′†
5 U ′

6(J
′
B)U

′
5

× [
U ′

3(J
′
3, J ′′

3 )U
′
2(J

′
2, J ′′

2 )
]

U ′
1(J

′
a, J ′

b, J ′
c, J ′

d)

where the parameters {J } are determined by the shapes and strengths of the individual dot
confining potentials. Comparison with the results of [30] then yields the following relations
between these new coefficients:

(1) The constant J ′
c can take on an arbitrary value.

(2) The constants J ′
2 and J ′′

2 must be chosen to satisfy the transcendental equation η = 0 (see
the appendix).

(3) The constants J ′
3 and J ′′

3 must be chosen to satisfy the transcendental equation η = 0 (see
the appendix).

(4) The constant J ′
5 must either be zero or chosen such that

√
4
3 (J

′
5)

2 − 2J ′
5 + 1 is an even

integer.
(5) The constant J ′

B must be an integer.
(6) The constants J ′

a, J ′
b, J ′

d can take on an infinite set of rationally related values, wherein
the ratio of any pair (e.g., J ′

b/J ′
d) can be chosen completely arbitrarily and the value of the

third constant is determined by this choice.
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The most restrictive of these conditions is that J ′
B must be an integer. However, note

that since the gates are applied sequentially this condition need only be satisfied during the
application of the U ′

6 gate, and it is plausible from the earlier sections of this paper that
corresponding Heisenberg exchange constants can be found. When these conditions are
satisfied it is indeed the case that C P ′ = (−1, 1, 1, 1) on the code space.

4.5. Dimensionality of parameter spaces required by two-body and four-body couplings

We caution that, although the encoding procedure described above has been shown
mathematically to remove the effect of the four-body couplings, the experimental construction
of a suitable apparatus using real quantum dots is another matter, as the following heuristic
calculation suggests.

Our modified gates imply the following constraints on the coupling coefficients (see the
appendix for the definitions of � and η):
U ′

5 gate

(a) K2[FG] = 1
2 K2[G H ];

(b) Either K2[F H ] = 0 or �(K2[F H ]) = 2n, where n must have an integer value;

U ′
B gate

(c) K2[i j ] is the same for all pairs within {A, B,C, D};
(d) K4[ABC D] = K4[AC B D] = K4[ADBC];
(e) K4[ABC D] = 2mK2[AB], where m may have any integer value;

U ′
2 gate

(f) K2[FG] = K2[F H ] = K2[G H ];
(g) K2[E F] = 9

2 K2[G H ];
(h) K4[EG F H ] = K4[E H FG];
(i) Either K4[E FG H ] = K4[EG F H ], or K4[E FG H ] and K4[EG F H ] satisfy the

transcendental equation η(K4[E FG H ], K4[EG F H ]) = 0;

U ′
3 gate

(j) K2[AB] = K2[AC] = K2[BC];
(k) K2[C D] = 9

2 K2[AB];
(l) K4[AC B D] = K4[ADBC];

(m) Either K4[ABC D] = K4[AC B D], or K4[ABC D] and K4[AC B D] satisfy the
transcendental equation η(K4[ABC D], K4[AC B D]) = 0;

U ′
1 gate

(n) K2[i j ] is the same for all pairs within {A, B,C, D};
(o) K2[DE] = 2K2[AB];
(p) K4[ABC D] = K4[AC B D] = K4[ADBC];
(q) K4[ABC E] = K4[AC B E] = K4[AE BC];
(r) K4[ADB E] = K4[AE B D];
(s) K4[ADC E] = K4[AEC D];
(t) K4[B DC E] = K4[B EC D];
(u) K4[ADB E] = K4[ADC E] = K4[B DC E];
(v) K4[AB DE] is a certain single-valued function of K4[ADB E];
(w) K4[BC DE] is a certain single-valued function of K4[ADC E];
(x) K4[AC DE] is a certain single-valued function of K4[B DC E].
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Since the coupling coefficients must in general vary with time in order to satisfy all of
these constraints (for example, K2[C D] and K2[AC] would be equal during the operation of
U ′

B but unequal during U ′
3), we also assume that particular constraints need to be concurrently

satisfied only when they arise from the same gate.
We first note that, by the same reasoning used to derive (6) and (18),a four-dot Hamiltonian

for the geometry of {A, B,C, E} contains a constant term and nine independent coupling
coefficients. If these nine coefficients assumed a given set of values and we wished to adjust
them to meet constraints such as those listed above, we would need nine additional degrees
of freedom in the system. We make the conservative assumption, however, that one two-
body coefficient and one four-body coefficient can be left unaltered and the others adjusted to
correspond to them, which means that only seven additional parameters are required. Similarly,
for the subset {A, B, D, E} ({A,C, D, E}, {B,C, D, E}, {A, B,C, D}), there are 9 (6, 7, 5)
independent coupling coefficients for which we require 7 (4, 5, 3) tunable parameters if a given
set of constraints are to be satisfied. We will of course count one more degree of freedom when
a constraint includes relationships between the two-body and four-body energies.

Now suppose that we designate one ‘base’ choice of {xb, xc, xv} such that, within each
of the two squares, all the quantities K2[i j ] are equal, all the quantities K4[i jkl] are equal
and K4[i jkl] = 2K2[i j ]. That arrangement can simultaneously satisfy constraints (b), (c),
(d), (e), (f), (h), (i), (j), (l), (m), (n) and (p) provided that the value of K2[F H ] is chosen
appropriately. From this potential, we would need to make one change within {E, F,G, H }
to reach condition (a) or condition (g), or one change within {5, 6, 7, 8} to obtain (k) or (o).
The couplings of {A, B,C, E} must be adjusted to match (q) while still satisfying (n), (o) and
(p) which requires six additional degrees of freedom as explained in the preceding paragraph.
Similarly, (v) ((w), (x)) and (r) ((s), (t)) together imply particular adjustments to the four-body
couplings in {A, B, D, E} ({A,C, D, E}, {B,C, D, E}) which require 6 (3,4) new parameters.
(The single-valued function in question is the same for all three cases, so K4[AB DE] ends
up equalling K4[AC DE] and K4[BC DE].) Finally, we need two more degrees of freedom
available somewhere in order to meet constraint (u), for a grand total of 28 degrees of freedom.

To put the size of this number into perspective we also count the independently tuned
energies necessary to meet the conditions on EQC using pairwise couplings alone. By choosing
a suitable combination {xb, xc, xv} for an entire eight-spin system, we could satisfy (b), (c), (f),
(j) and (n) at the same time; one more degree of freedom would be necessary to also satisfy (o).
Starting from such a system we could presumably satisfy (a) or (g) by adjusting one parameter
within {E, F,G, H }, or satisfy (k) by adjusting one parameter within {A, B,C, D}. Hence
we estimate that seven degrees of freedom are required for the purely Heisenberg Hamiltonian
considered in [30]. We see that, even if one presupposes the ability to create and position many
identical qubits of the form (21), (22) (three free parameters),accounting correctly for two-body
and four-body coupling is still a great deal more demanding than two-body coupling alone. It
is this experimental challenge that must be weighed against the increased length (and hence
vulnerability to decoherence) of pulse sequences employing only two-body couplings [31].

5. Summary and conclusions

Earlier work [17, 18] showed that in highly symmetrical geometries the interaction between
three and four mutually interacting electrons confined in parabolic potentials contains many-
body terms, which in the case of four electrons qualitatively modify the usual Heisenberg
interaction. In this work we have improved upon these early results by considering realistic
linear and square geometries and by utilizing Gaussian confining potentials. Specifically,
we have shown in a Heitler–London calculation that in the case of four mutually interacting
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electrons, in both the linear and square geometries, the system’s Hamiltonian contains many-
body exchange terms which may be of comparable strength to the Heisenberg exchange
interactions. This can have important implications for quantum information processing using
coupled quantum dots. We have considered, in particular, the implications for quantum
computation using logical qubits encoded into decoherence-free subspaces of four electrons
per qubit. We showed that previously designed conditional quantum logic gates between these
encoded qubits must be modified, in order to account for the four-body terms, when four or
more electrons are coupled simultaneously. This requires the ability to tune, to a certain extent,
the four-body exchange constants. It is worth noting, however, that there are alternatives to
this method of implementing encoded conditional logic gates which may be less demanding.
In particular, it is worth exploring the possibility of completing the set of universal encoded
quantum logic gates by supplementing single-qubit gates (where, as we have shown, four-
body effects are harmless) with measurements and teleportation as in linear optics quantum
computing [40]. This will be a subject for future research.
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Appendix A. Derivation of constraints on four-body coupling terms for encoded qubits

A.1. The UA gate

UA only involves a single exchange interaction and so is unmodified in the presence of the
three- and four-body corrections:

U ′
A = UA = exp

[
− i

2
cos−1(−1/3)EDE

]

=





α 1
i
√

2

α 1
i
√

2

α 1
i
√

2

α 1
i
√

2
1

i
√

2
α∗

1
i
√

2
α∗

1
i
√

2
α∗

1
i
√

2
α∗

β

β

1√
3

+ 1
2i

√
6

1
2i

√
5
2

1
2i

√
5
2

1√
3

− 1
2i

√
6

β

β





,

where α =
√

2−i√
6

and β = e−i/[2 cos−1(−3)].
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A.2. The U5 gate

U5 involves dots F , G and H , with dots F and H simultaneously coupled to G, and hence
experiences a three-body correction to the exchange constants. In addition, a coupling between
dot F and dot H will arise which forces our modified U5 gate to have the form

U ′
5 = exp

[
iπ√

3

(
EFG +

1

2
EG H + J ′

5 EF H

)]

=




p �

� p∗
p �

� p∗
p �

p �

� p∗
� p∗

e
iπ(2J5+3)

2
√

3

p �

e
iπ(2J5+3)

2
√

3

e
iπ(2J5+3)

2
√

3

e
iπ(2J5+3)

2
√

3

� p∗




,

where

� =
√

4
3 (J

′
5)

2 − 2J ′
5 + 1

p = cos
[π

2
�
]

+
iJ ′

5√
3�

sin
[π

2
�
]

� = i

J ′
5

(1 − J ′
5) sin

[π
2
�
]
.

It is seen that this gate operates ‘classically’, and is non-diagonal, only when J ′
5 is either 0 or

chosen such that � is an even integer. In both cases we recover Bacon’s functional form:

U5 =




i
i

i
i

i
i

i
i

ei
√

3π
2

i
ei

√
3π
2

ei
√

3π
2

ei
√

3π
2

i




.



S740 R Woodworth et al

A.3. The UB gate

Bacon’s UB gate is

UB = exp

[
− iπ

2

(
D∑

A=i< j

Ei j

)]

= diag(1, 1, 1, 1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1).

UB involves coupling between four dots and so experiences both quantitative three-body
corrections and a four-body qualitative correction. Since the four spins in UB are coupled
symmetrically the form of the four-body correction must also be symmetric:

U ′
B = exp

{
− iπ

2

[ D∑

A=i< j

Ei j + J ′
B(E AB ECD + E AC EB D + E AD EBC)

]}

= diag(γ−3, γ−3, γ−3, γ−3,−γ,−γ,−γ,−γ,−γ,−γ,−γ,−γ−3,−γ,−γ ),
where γ = e

iπ
2 J ′

B . Note that because U ′
B forms part of the U ′

6 gate, which acts on ST = 0 states
outside of the code space, the action of the four-body terms in it is nontrivial for arbitrary J ′

B .
However, upon setting J ′

B to any integer value we recover UB up to an overall phase.

A.4. The U2,U3 gates

U2 and U3 similarly involve coupling between four dots inside a fixed code block, and so also
experience both quantitative three-body corrections and a four-body qualitative correction. In
this case the Heisenberg couplings are not symmetric, so we do not assume that all four-body
terms are turned on with equal coupling constants:

U ′
2 = exp

{
iπ

4
√

2

[
−3EE F − 2

3
(EFG + EF H + EG H )

+ J ′
2 EE F EG H + J ′′

2 (E AC EB D + EE H EFG)

]}

=





δ

ε

δ

ε

ζ

ζ

η ρ

η ρ

ρ η∗
ζ

η∗ ρ

eiπ
(−5+J ′

2+2J ′′
2 )

4
√

2

ρ η∗
ρ η





and

U ′
3 = exp

{
iπ

4
√

2

[
−3ECD − 2

3
(E AB + E AC + EBC)

+ J ′
3 E AB ECD + J ′′

3 (E AC EB D + E AD EBC)

]}
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=





δ

δ

ε

ε

ζ

η ρ

ζ

η ρ

ζ

ρ η∗
η∗ ρ

eiπ
(−5+J ′

3+2J ′′
3 )

4
√

2

ρ η

ρ η∗





,

where

ν =
√

3(J ′
k)

2 + 3(J ′′
k )

2 − 6J ′
k J ′′

k − 16J ′
k + 16J ′′

k + 24

δ = eiπ 1
4
√

2 (J ′
k+2J ′′

k +3)

ε = eiπ 1
4
√

2 (J ′
k+2J ′′

k +3)

ζ = e−iπ 1
4
√

2 (J ′
k+3)

η = e−iπ 1
4
√

2

[
cos

(
πν

4
√

6

)
− 1√

3ν
(J ′

k − J ′′
k ) sin

(
πν

4
√

6

)]

ρ =
√

2(3 − J ′
k + J ′′

k )√
3ν

exp

(
− iπ

4
√

2

[
1 + J ′′

k − ν√
3

])[
1 − exp

(
iπν

2
√

6

)]

and k = 2 (3) for U ′
2 (U ′

3). It turns out that these two gates can act ‘classically’ only when
η = 0, which leads to a transcendental equation relating J ′

k and J ′′
k (J ′

k = J ′′
k is one class of

solutions).

A.5. The U1 gate

The U1 gate is qualitatively different from all the previous gates. It involves an interaction
among five dots and between two code blocks. In this case the effect of the four-body
interactions is generally to strongly interfere with the action of U1. Therefore we must carefully
re-examine this gate and consider whether it can be made compatible with the four-body effect.
The generator of U1 is

H1 = EDE + 1
2

D∑

A=i< j

Ei j ,

and the modified generator, in the presence of four-body interactions, is in general

H ′
1 = H1 +

E∑

A=i< j<k<l

J ′
i j;kl Ei j Ekl .

Therefore the new gate will have the form

U ′
1 = exp

(
iπ√

3
H ′

1

)
.
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There are symmetry relations between the constants J ′
i j;kl : the magnitudes of the exchange

interactions in H1 imply an equivalence between spins A, B and C while spins D and E
are distinct. Thus there will be four such constants, corresponding to the following sets of
inequivalent two-body pairings:

• one of spins {A, B,C} coupled with spin Dbut without spin E : J ′
a ≡ J ′

AB;CD = J ′
AC;B D =

J ′
BC;AD ;

• one of spins {A, B,C} coupled with spin E but without spin D: J ′
b ≡ J ′

AB;CE = J ′
AC;B E =

J ′
BC;AE ;

• spin D coupled with spin E : J ′
c ≡ J ′

AB;DE = J ′
AC;DE = J ′

BC;DE ;
• one of spins {A, B,C} coupled with spin D, one with spin E : J ′

d ≡ J ′
AD;B E = J ′

AD;CE =
J ′

B D;AE = J ′
B D;CE = J ′

CD;AE = J ′
CD;B E .

Thus U ′
1 can be written as

U ′
1 = exp

{
iπ√

3

[
EDE +

1

2

D∑

A=i< j

Ei j + J ′
a(E AB ECD + E AC EB D + E AD EBC)

+ J ′
b(E AB ECE + E AC EB E + E AE EBC) + J ′

c(E AB EDE + E AC EDE + EBC EDE)

+ J ′
d(E AD EB E + E AD ECE + E AE EB D

+ E AE ECD + EB D ECE + EB E ECD)

]}

=





χ+ λ

χ+ λ

χ+ λ

χ+ λ

λ χ−
λ χ−

λ χ−
λ χ−

ξ

θ

τ− µ

µ τ+

ξ

θ





(A.1)

where

x =
{

9
(
1 + 4J ′

b − 4J ′
d

)
+ 48

[
J ′

a
2 + J ′

b
2 − J ′

b J ′
d + J ′

d
2 − J ′

a

(
J ′

b + J ′
d

)]}1/2

y =
[
3 + 8J ′

a
2 + 8J ′

b
2 + 9J ′

c − J ′
b

(
9 + 6J ′

c − 4J ′
d

)
+ 2

(
3J ′

c − 2J ′
d

)2

− 2J ′
a

(−3 + 7J ′
b + 3J ′

c − 2J ′
d

) − 6J ′
d

]1/2

χ± =
[

cos (πx/6)± 2i
√

3

(
2J ′

a − J ′
b − J ′

d

)

x
sin (πx/6)

]
eiπ

√
3

6 (1+2J ′
a+2J ′

b+2J ′
d)

λ = 3i
(
1 + 2J ′

b − 2J ′
d

)

x
sin (πx/6) eiπ

√
3

6 (1+2J ′
a+2J ′

b+2J ′
d) (A.2)

ξ = eiπ 1√
3(2−J ′

a−J ′
b+2J ′

d)

θ = ξeiπ
√

3J ′
c



Few-body spin couplings and their implications for universal quantum computation S743

τ± =
[

cos

(
πy√

6

)
± i

(
3 + 8J ′

a − 7J ′
b − 3J ′

c + 2J ′
d

)

2
√

2y
sin

(
πy√

6

)]
eiπ 1√

3 (2+J ′
a+J ′

b−2J ′
d)

µ =
√

15
(

J ′
b − 3J ′

c + 2J ′
d − 1

)

2
√

2iy
sin

(
πy√

6

)
eiπ 1√

3(2+J ′
a+J ′

b−2J ′
d).

In comparison, Bacon’s U1 gate has the form

U1 =




�

�

�

�

�

�

�

�

�

�

� �

� �

�

�




(A.3)

where

� = iei π

2
√

3

� = ei 2π√
3

� = i

2

√
5

2
ei 2π√

3 sin

(
π√

2

)

� = ei 2π√
3

[
cos

(
π√

2

)
+ i

√
3

8
sin

(
π√

2

)]

� = ei 2π√
3

[
cos

(
π√

2

)
− i

√
3

8
sin

(
π√

2

)]
,

and it may be verified that U ′
1 reduces to U1 in the limit J ′

a, J ′
b, J ′

c, J ′
d → 0. The U ′

1 gate,
like the U1 gate, is applied at the beginning of the controlled-phase gate sequence and hence
acts on the computational basis states. By comparing the explicit matrix representations (A.1)
and (A.3) it is clear that the crucial difference between the two is the appearance of the χ+ terms
on the diagonal of U ′

1 (the difference between � and λ is irrelevant: it translates into a global
phase). In order for U ′

1 to act like U1, i.e. in order for it not to prepare a superposition of code
states and the first four non-code states, χ+ must vanish. Consulting the expression (A.2) for
χ+ it is evident that this leads to a complicated transcendental equation relating the constants
{J ′

a, J ′
b, J ′

d} (but not involving J ′
c). A numerical solution of the condition χ+ = 0 leads to the

result that the constants {J ′
a, J ′

b, J ′
d} can take on an infinite set of rationally related values. Upon

setting the ratio J ′
b/J ′

d to any rational number (except 1) we may calculate a corresponding
rational value of J ′

a .
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